The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: possible physiological significance of specific cleavage by caspase 3.

نویسندگان

  • Tomohiro Nakayama
  • Mitsuharu Hattori
  • Keiko Uchida
  • Takeshi Nakamura
  • Yoko Tateishi
  • Hiroko Bannai
  • Miwako Iwai
  • Takayuki Michikawa
  • Takafumi Inoue
  • Katsuhiko Mikoshiba
چکیده

The type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is an intracellular Ca(2+) channel protein that plays crucial roles in generating complex Ca(2+) signalling patterns. IP(3)R1 consists of three domains: a ligand-binding domain, a regulatory domain and a channel domain. In order to investigate the function of these domains in its gating machinery and the physiological significance of specific cleavage by caspase 3 that is observed in cells undergoing apoptosis, we utilized various IP(3)R1 constructs tagged with green fluorescent protein (GFP). Expression of GFP-tagged full-length IP(3)R1 or IP(3)R1 lacking the ligand-binding domain in HeLa and COS-7 cells had little effect on cells' responsiveness to an IP(3)-generating agonist ATP and Ca(2+) leak induced by thapsigargin. On the other hand, in cells expressing the caspase-3-cleaved form (GFP-IP(3)R1-casp) or the channel domain alone (GFP-IP(3)R1-ES), both ATP and thapsigargin failed to induce increase of cytosolic Ca(2+) concentration. Interestingly, store-operated (-like) Ca(2+) entry was normally observed in these cells, irrespective of thapsigargin pre-treatment. These findings indicate that the Ca(2+) stores of cells expressing GFP-IP(3)R1-casp or GFP-IP(3)R1-ES are nearly empty in the resting state and that these proteins continuously leak Ca(2+). We therefore propose that the channel domain of IP(3)R1 tends to remain open and that the large regulatory domain of IP(3)R1 is necessary to keep the channel domain closed. Thus cleavage of IP(3)R1 by caspase 3 may contribute to the increased cytosolic Ca(2+) concentration often observed in cells undergoing apoptosis. Finally, GFP-IP(3)R1-casp or GFP-IP(3)R1-ES can be used as a novel tool to deplete intracellular Ca(2+) stores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis.

The inositol 1,4,5-trisphosphate receptor (IP(3)R) is a tetrameric intracellular Ca(2+) channel, which mediates the release of Ca(2+) from the endoplasmic reticulum in response to many different extracellular stimuli. We present a 3D structure of the type 1 IP(3)R obtained by electron microscopy and single-particle analysis that reveals its domain organization. The IP(3)R has a flower-like appe...

متن کامل

Calpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain.

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] is one of the key intracellular second messengers in cells and mobilizes Ca2+ stores in the ER (endoplasmic reticulum). Ins(1,4,5)P3 has a short half-life within the cell, and is rapidly metabolized through one of two pathways, one of which involves further phosphorylation of the inositol ring: Ins(1,4,5)P3 3-kinase (IP3-3K) phosphorylates Ins(1,4,5...

متن کامل

Single Channel Function of Inositol 1,4,5-trisphosphate Receptor Type-1 and -2 Isoform Domain-Swap Chimeras

The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likel...

متن کامل

Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution.

We report here the first three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R). From cryo-electron microscopic images of purified receptors embedded in vitreous ice, a three-dimensional structure was determined by use of standard single particle reconstruction techniques. The structure is strikingly different from that of the ryanodine receptor at similar reso...

متن کامل

Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium.

Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 377 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004